Probability Distributions and Coherent States of B r , C r and D r Algebras
نویسندگان
چکیده
A new approach to probability theory based on quantum mechanical and Lie algebraic ideas is proposed and developed. The underlying fact is the observation that the coherent states of the Heisenberg-Weyl, su(2), su(r+1), su(1, 1) and su(r, 1) algebras in certain symmetric (bosonic) representations give the “probability amplitudes” (or the “square roots”) of the well-known Poisson, binomial, multinomial, negative binomial and negative multinomial distributions in probability theory. New probability distributions are derived based on coherent states of the classical algebras Br, Cr and Dr in symmetric representations. These new probability distributions are simple generalisation of the multinomial distributions with some added new features reflecting the quantum and Lie algebraic construction. As byproducts, simple proofs and interpretation of addition theorems of Hermite polynomials are obtained from the ‘coordinate’ representation of the (negative) multinomial states. In other words, these addition theorems are higher rank counterparts of the well-known generating function of Hermite polynomials, which is essentially the ‘coordinate’ representation of the ordinary (Heisenberg-Weyl) coherent state. On leave of absence from Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, P.R.China.
منابع مشابه
Probability Distributions and Coherent States of B r , C
A new approach to probability theory based on quantum mechanical and Lie algebraic ideas is proposed and developed. The underlying fact is the observation that the coherent states of the Heisenberg-Weyl, su(2), su(r+1), su(1, 1) and su(r, 1) algebras in certain symmetric (bosonic) representations give the “probability amplitudes” (or the “square roots”) of the well-known Poisson, binomial, mult...
متن کاملDerivations in semiprime rings and Banach algebras
Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملCharacterization of $delta$-double derivations on rings and algebras
The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...
متن کاملOn Hyper Pseudo BCK-algebras
In this paper, we introduce the notion of hyper pseudo B C K - algebras, which is a generalization of pseudo BCK -algebras and hyper BCK -algebras and we investigates some related properties. In follow, we de ne some kinds of hyper pseudo BCK -ideals of a hyper pseudo BCK - algebra and we find the relations among them. Finally, we characterize the hyper pseudo BCK -ideals of type 4 generated by...
متن کامل